公元13世纪,在意大利有一位天才的数学家名字叫斐波纳奇,他在一本《算盘之书》的著作里记载了这样一道数学题:有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月便有生育能力,那么过一年后,问一共能有多少对兔子?假设每产一对必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活率。究竟有多少对呢?我们不妨计算一下,一对兔子,在一个月后生出了一对,总数是两对。而在这两对当中,只有第一对兔子有生育能力,因而两个月后一共有三对兔子,三个月后第一第二对兔子都有生育能力,因此又新出生两对兔子,总共有五对兔子,这样依此类推,经过一年(十二个月)后,兔子总数为233对。 即兔子的对数依次为:1,2,3,5,8,13,21,34,55,89,144,233,研究一下这个数列,我们会惊奇地发现它有许多有趣的性质:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。即3=2+1;5=2+3;8=3+5;……233=89+144,这个数列的发现对人类数学及自然科学的发展具有重大的意义,人们为了纪念大数学家斐波纳奇,因而把此数列命名为斐波纳奇数列。